NeoHookean
ConstitutiveModels.NeoHookean
— Typestruct NeoHookean <: ConstitutiveModels.AbstractHyperelasticModel{2, 0}
ConstitutiveModels.helmholtz_free_energy
— Method$\psi = \frac{1}{2}\left[\frac{1}{2}\left(J^2 - 1\right) - \ln J\right] + \frac{1}{2}\mu\left(\bar{I}_1 - 3\right)$
helmholtz_free_energy(
_::NeoHookean,
props,
Δt,
∇u,
θ,
Z
) -> Tuple{Any, Any}
ConstitutiveModels.initialize_props
— Methodinitialize_props(_::NeoHookean, inputs::Dict{String}) -> Any
Pure Shear Strain
Analytic Solution
$\mathbf{\sigma}_{11} = \frac{\mu}{3}\left[\frac{1}{2}\left(\lambda^2 + \lambda^{-2}\right) - 1\right]$
$\mathbf{\sigma}_{22} = \mathbf{\sigma}_{11}$
$\mathbf{\sigma}_{33} = \frac{\mu}{3}\left(2 - \lambda^2 + \lambda^{-2}\right)$
$\mathbf{\sigma}_{12} = \frac{\mu}{2}\left(\lambda^2 - \lambda^{-2}\right)$
All other components are zero
Verification
Here is a comparison of an analytic solution to the uniaxial stress boundary value problem in displacement control.
using ConstitutiveModels
using Plots
function neohookean_pure_shear_strain()
inputs = Dict(
"Young's modulus" => 1.0,#u"MPa",
"Poisson's ratio" => 0.3
)
model = NeoHookean()
props = initialize_props(model, inputs)
Δt = 0.0
θ = 0.0
Z = initialize_state(model)
λs = LinRange(1., 1.25, 101)
motion = PureShearStrain{Float64}()
∇us, σs, Zs = simulate_material_point(cauchy_stress, model, props, Δt, θ, Z, motion, λs)
μ = props[2]
σ_11s_an = (μ / 3.) * (0.5 * (λs.^2 .+ λs.^(-2)) .- 1.)
σ_33s_an = (μ / 3.) * (2. .- λs.^2 .+ λs.^(-2))
σ_12s_an = (μ / 2.) * (λs.^2 .- λs.^(-2))
plot(motion, ∇us, σs, Zs, σ_11s_an, σ_33s_an, σ_12s_an)
end
neohookean_pure_shear_strain()
Simple Shear
Analytic Solution
$\mathbf{\sigma}_{11} = \frac{2}{3}\mu\gamma^2$
$\mathbf{\sigma}_{22} = -\frac{1}{3}\mu\gamma^2$
$\mathbf{\sigma}_{33} = \mathbf{\sigma_{22}}$
$\mathbf{\sigma}_{12} = \mu\gamma$
All other components are zero
Verification
Here is a comparison of an analytic solution to the uniaxial stress boundary value problem in displacement control.
using ConstitutiveModels
using Plots
function neohookean_simple_shear()
inputs = Dict(
"Young's modulus" => 1.0,#u"MPa",
"Poisson's ratio" => 0.3
)
model = NeoHookean()
props = initialize_props(model, inputs)
Δt = 0.0
θ = 0.0
Z = initialize_state(model)
γs = LinRange(0., 1., 101)
motion = SimpleShear{Float64}()
∇us, σs, Zs = simulate_material_point(cauchy_stress, model, props, Δt, θ, Z, motion, γs)
μ = props[2]
σ_11s_an = (2. / 3.) * μ * γs.^2
σ_22s_an = -(1. / 3.) * μ * γs.^2
σ_12s_an = μ * γs
plot(motion, ∇us, σs, Zs, σ_11s_an, σ_22s_an, σ_12s_an)
end
neohookean_simple_shear()
Uniaxial Strain
Analytic solution
$\mathbf{\sigma}_{11} = \frac{1}{2}\kappa\left(\lambda - \frac{1}{\lambda}\right) + \frac{2}{3}\mu\left(\lambda^2 - 1\right)\lambda^{-5/3}$
$\mathbf{\sigma}_{22} = \frac{1}{2}\kappa\left(\lambda - \frac{1}{\lambda}\right) - \frac{1}{3}\mu\left(\lambda^2 - 1\right)\lambda^{-5/3}$
$\mathbf{\sigma}_{33} = \mathbf{\sigma_{22}}$
All other components are zero.
Verification
Here is a comparison of an analytic solution to the uniaxial stress boundary value problem in displacement control.
using ConstitutiveModels
using Plots
function neohookean_uniaxial_strain()
inputs = Dict(
"Young's modulus" => 1.0,#u"MPa",
"Poisson's ratio" => 0.3
)
model = NeoHookean()
props = initialize_props(model, inputs)
Δt = 0.0
θ = 0.0
Z = initialize_state(model)
λs = LinRange(1., 4., 101)
motion = UniaxialStrain{Float64}()
∇us, σs, Zs = simulate_material_point(cauchy_stress, model, props, Δt, θ, Z, motion, λs)
κ, μ = props[1], props[2]
σ_11s_an = 0.5 * κ * (λs .- 1 ./ λs) +
(2. / 3.) * μ * (λs.^2 .- 1.) .* λs .^ (-5. / 3.)
σ_22s_an = 0.5 * κ * (λs .- 1 ./ λs) -
(1. / 3.) * μ * (λs.^2 .- 1.) .* λs .^ (-5. / 3.)
plot(motion, ∇us, σs, Zs, σ_11s_an, σ_22s_an)
end
neohookean_uniaxial_strain()
Uniaxial Stress
Analytic solution
$\mathbf{\sigma}_{11} = \frac{1}{2}\kappa\left(\lambda - \frac{1}{\lambda}\right) + \frac{2}{3}\mu\left(\lambda^2 - 1\right)\lambda^{-5/3}$
$\mathbf{\sigma}_{22} = \frac{1}{2}\kappa\left(\lambda - \frac{1}{\lambda}\right) - \frac{1}{3}\mu\left(\lambda^2 - 1\right)\lambda^{-5/3}$
$\mathbf{\sigma}_{33} = \mathbf{\sigma_{22}}$
All other components are zero.
Verification
Here is a comparison of an analytic solution to the uniaxial stress boundary value problem in displacement control.
using ConstitutiveModels
using Plots
function neohookean_uniaxial_strain()
inputs = Dict(
"Young's modulus" => 1.0,#u"MPa",
"Poisson's ratio" => 0.3
)
model = NeoHookean()
props = initialize_props(model, inputs)
Δt = 0.0
θ = 0.0
Z = initialize_state(model)
λs = LinRange(1., 4., 101)
motion = UniaxialStressDisplacementControl{Float64}()
∇us, σs, Zs = simulate_material_point(cauchy_stress, model, props, Δt, θ, Z, motion, λs)
κ, μ = props[1], props[2]
σ_11s_an = 0.5 * κ * (λs .- 1 ./ λs) +
(2. / 3.) * μ * (λs.^2 .- 1.) .* λs .^ (-5. / 3.)
σ_22s_an = 0.5 * κ * (λs .- 1 ./ λs) -
(1. / 3.) * μ * (λs.^2 .- 1.) .* λs .^ (-5. / 3.)
plot(motion, ∇us, σs, Zs)#, σ_11s_an, σ_22s_an)
end
neohookean_uniaxial_strain()