Gent
ConstitutiveModels.Gent
— Typestruct Gent <: ConstitutiveModels.AbstractHyperelasticModel{3, 0}
ConstitutiveModels.helmholtz_free_energy
— Method$\psi = \frac{1}{2}\left[\frac{1}{2}\left(J^2 - 1\right) - \ln J\right] - \frac{1}{2}\mu J_m\ln\left(1 - \frac{\bar{I}_1 - 3}{Jm}\right)$
helmholtz_free_energy(
_::Gent,
props,
Δt,
∇u,
θ,
Z
) -> Tuple{Any, Any}
ConstitutiveModels.initialize_props
— Methodinitialize_props(_::Gent, inputs::Dict{String}) -> Any
Simple Shear
Analytic Solution
$\mathbf{\sigma}_{11} = \frac{2}{3}\frac{J_m\mu\gamma^2}{J_m - \gamma^2}$
$\mathbf{\sigma}_{22} = -\frac{1}{3}\frac{J_m\mu\gamma^2}{J_m - \gamma^2}$
$\mathbf{\sigma}_{33} = \mathbf{\sigma_{22}}$
$\mathbf{\sigma}_{12} = \frac{J_m\mu\gamma}{J_m - \gamma^2}$
All other components are zero
Verification
Here is a comparison of an analytic solution to the uniaxial stress boundary value problem in displacement control.
using ConstitutiveModels
using Plots
function gent_simple_shear()
inputs = Dict(
"Young's modulus" => 1.0,#u"MPa",
"Poisson's ratio" => 0.3,
"Jm" => 13.125
)
model = Gent()
props = initialize_props(model, inputs)
Δt = 0.0
θ = 0.0
Z = initialize_state(model)
γs = LinRange(0., 1., 101)
motion = SimpleShear{Float64}()
∇us, σs, Zs = simulate_material_point(cauchy_stress, model, props, Δt, θ, Z, motion, γs)
μ, Jm = props[2], props[3]
σ_11s_an = (2. / 3.) * Jm * μ * γs.^2 ./ (Jm .- γs.^2)
σ_22s_an = -(1. / 3.) * Jm * μ * γs.^2 ./ (Jm .- γs.^2)
σ_12s_an = Jm * μ * γs ./ (Jm .- γs.^2)
plot(motion, ∇us, σs, Zs, σ_11s_an, σ_22s_an, σ_12s_an)
end
gent_simple_shear()
Uniaxial Strain
Analytic solution
$\mathbf{\sigma}_{11} = \frac{1}{2}\kappa\left(\lambda - \frac{1}{\lambda}\right) + \frac{2}{3}\mu\left(\lambda^2 - 1\right)\lambda^{-5/3}$
$\mathbf{\sigma}_{22} = \frac{1}{2}\kappa\left(\lambda - \frac{1}{\lambda}\right) - \frac{1}{3}\mu\left(\lambda^2 - 1\right)\lambda^{-5/3}$
$\mathbf{\sigma}_{33} = \mathbf{\sigma_{22}}$
All other components are zero.
Verification
Here is a comparison of an analytic solution to the uniaxial stress boundary value problem in displacement control.
using ConstitutiveModels
using Plots
function gent_uniaxial_strain()
inputs = Dict(
"Young's modulus" => 1.0,#u"MPa",
"Poisson's ratio" => 0.3,
"Jm" => 13.125
)
model = Gent()
props = initialize_props(model, inputs)
Δt = 0.0
θ = 0.0
Z = initialize_state(model)
λs = LinRange(1., 4., 101)
motion = UniaxialStrain{Float64}()
∇us, σs, Zs = simulate_material_point(cauchy_stress, model, props, Δt, θ, Z, motion, λs)
κ, μ, Jm = props[1], props[2], props[3]
σ_11s_an = 0.5 * κ .* (λs .- 1. ./ λs) -
(2. / 3.) * Jm * μ .* (λs.^2 .- 1.) ./
(λs.^3 - (Jm + 3) * λs.^(5. / 3.) + 2. * λs)
σ_22s_an = 0.5 * κ .* (λs .- 1. ./ λs) +
(1. / 3.) * Jm * μ .* (λs.^2 .- 1.) ./
(λs.^3 - (Jm + 3) * λs.^(5. / 3.) + 2. * λs)
plot(motion, ∇us, σs, Zs, σ_11s_an, σ_22s_an)
end
gent_uniaxial_strain()